x=5–√+15–√−1x=5+15−1x = \frac{{\sqrt 5 + 1}}{{\sqrt 5 - 1}}   and y=5−15+1," role="presentation">y=5–√−15–√+1,y=5−15+1,{\text{y}} = \frac{{\sqrt 5 - 1}}{{\sqrt 5 + 1}}{\text{,}}   then the value of x2+xy+y2x2−xy+y2" role="presentation">x2+xy+y2x2−xy+y2x2+xy+y2x2−xy+y2\frac{{{x^2} + xy + {y^2}}}{{{x^2} - xy + {y^2}}}   is?" /> x=5–√+15–√−1x=5+15−1x = \frac{{\sqrt 5 + 1}}{{\sqrt 5 - 1}}   and y=5−15+1," role="presentation">y=5–√−15–√+1,y=5−15+1,{\text{y}} = \frac{{\sqrt 5 - 1}}{{\sqrt 5 + 1}}{\text{,}}   then the value of x2+xy+y2x2−xy+y2" role="presentation">x2+xy+y2x2−xy+y2x2+xy+y2x2−xy+y2\frac{{{x^2} + xy + {y^2}}}{{{x^2} - xy + {y^2}}}   is?" /> x=5–√+15–√−1x=5+15−1x = \frac{{\sqrt 5 + 1}}{{\sqrt 5 - 1}}   and y=5−15+1," role="presentation">y=5–√−15–√+1,y=5−15+1,{\text{y}} = \frac{{\sqrt 5 - 1}}{{\sqrt 5 + 1}}{\text{,}}   then the value of x2+xy+y2x2−xy+y2" role="presentation">x2+xy+y2x2−xy+y2x2+xy+y2x2−xy+y2\frac{{{x^2} + xy + {y^2}}}{{{x^2} - xy + {y^2}}}   is?" />

If
x=5+151
  and
y=515+1,
  then the value of
x2+xy+y2x2xy+y2
  is?

  • 1
    34
  • 2
    53
  • 3
    43
  • 4
    35
Answer:- 1
Explanation:-

Solution:
x=5+151 and y=515+1x=1yxy=1x+y=5+151 + 515+1x+y=5+1+25+5+12551x+y=124x+y=3x+1x=3x2+1x2=(3)22x2+1x2=7Now,x2+xy+y2x2xy+y2=x2+y2+xyx2+y2xy=7+171=86=43

Post your Comments

Your comments will be displayed only after manual approval.

  and
y=515+1,
  then the value of
x2+xy+y2x2xy+y2
  is?", "text": "If
x=5+151
  and
y=515+1,
  then the value of
x2+xy+y2x2xy+y2
  is?", "dateCreated": "7/24/2019 10:09:12 AM", "author": { "@type": "Person", "name": "Nitin Sir" }, "answerCount": "4", "acceptedAnswer": { "@type": "Answer", "text": "
Solution:
x=5+151 and y=515+1x=1yxy=1x+y=5+151 + 515+1x+y=5+1+25+5+12551x+y=124x+y=3x+1x=3x2+1x2=(3)22x2+1x2=7Now,x2+xy+y2x2xy+y2=x2+y2+xyx2+y2xy=7+171=86=43
", "dateCreated": "7/24/2019 10:09:12 AM", "author": { "@type": "Person", "name": "Nitin Sir" } }, "suggestedAnswer": { "@type": "Answer", "text": "
Solution:
x=5+151 and y=515+1x=1yxy=1x+y=5+151 + 515+1x+y=5+1+25+5+12551x+y=124x+y=3x+1x=3x2+1x2=(3)22x2+1x2=7Now,x2+xy+y2x2xy+y2=x2+y2+xyx2+y2xy=7+171=86=43
", "dateCreated": "7/24/2019 10:09:12 AM" } }
Test
Classes
E-Book