x=5–√+15–√−1x=5+15−1x = \frac{{\sqrt 5 + 1}}{{\sqrt 5 - 1}} and y=5−15+1," role="presentation">y=5–√−15–√+1,y=5−15+1,{\text{y}} = \frac{{\sqrt 5 - 1}}{{\sqrt 5 + 1}}{\text{,}} then the value of x2+xy+y2x2−xy+y2" role="presentation">x2+xy+y2x2−xy+y2x2+xy+y2x2−xy+y2\frac{{{x^2} + xy + {y^2}}}{{{x^2} - xy + {y^2}}} is?" /> x=5–√+15–√−1x=5+15−1x = \frac{{\sqrt 5 + 1}}{{\sqrt 5 - 1}} and y=5−15+1," role="presentation">y=5–√−15–√+1,y=5−15+1,{\text{y}} = \frac{{\sqrt 5 - 1}}{{\sqrt 5 + 1}}{\text{,}} then the value of x2+xy+y2x2−xy+y2" role="presentation">x2+xy+y2x2−xy+y2x2+xy+y2x2−xy+y2\frac{{{x^2} + xy + {y^2}}}{{{x^2} - xy + {y^2}}} is?" /> x=5–√+15–√−1x=5+15−1x = \frac{{\sqrt 5 + 1}}{{\sqrt 5 - 1}} and y=5−15+1," role="presentation">y=5–√−15–√+1,y=5−15+1,{\text{y}} = \frac{{\sqrt 5 - 1}}{{\sqrt 5 + 1}}{\text{,}} then the value of x2+xy+y2x2−xy+y2" role="presentation">x2+xy+y2x2−xy+y2x2+xy+y2x2−xy+y2\frac{{{x^2} + xy + {y^2}}}{{{x^2} - xy + {y^2}}} is?" />
Post your Comments