(x−1x) = 21−−√,(x−1x) = 21,\left( {x - \frac{1}{x}} \right){\text{ = }}\sqrt {21} {\text{,}} then the value of (x2+1x2)(x+1x)" role="presentation">(x2+1x2)(x+1x)(x2+1x2)(x+1x)\left( {{x^2} + \frac{1}{{{x^2}}}} \right)\left( {x + \frac{1}{x}} \right) is = ?" /> (x−1x) = 21−−√,(x−1x) = 21,\left( {x - \frac{1}{x}} \right){\text{ = }}\sqrt {21} {\text{,}} then the value of (x2+1x2)(x+1x)" role="presentation">(x2+1x2)(x+1x)(x2+1x2)(x+1x)\left( {{x^2} + \frac{1}{{{x^2}}}} \right)\left( {x + \frac{1}{x}} \right) is = ?" /> (x−1x) = 21−−√,(x−1x) = 21,\left( {x - \frac{1}{x}} \right){\text{ = }}\sqrt {21} {\text{,}} then the value of (x2+1x2)(x+1x)" role="presentation">(x2+1x2)(x+1x)(x2+1x2)(x+1x)\left( {{x^2} + \frac{1}{{{x^2}}}} \right)\left( {x + \frac{1}{x}} \right) is = ?" />
Post your Comments