Iflog3log(3x−2)andlog(3x+4)areinarithmeticprogression,thenxisequalto−Iflog⁡3log⁡(3x−2)andlog⁡(3x+4)areinarithmeticprogression,thenxisequalto−\eqalign{ & {\text{If}}\,\log 3\log \left( {{3^x} - 2} \right)\,{\text{and}}\,\log \left( {{3^x} + 4} \right)\, \cr & {\text{are}}\,{\text{in}}\,{\text{arithmetic}}\,\,{\text{progression}}\,{\text{,}} \cr & {\text{then}}\,x\,{\text{is}}\,{\text{equal}}\,{\text{to}} - \cr} " /> Iflog3log(3x−2)andlog(3x+4)areinarithmeticprogression,thenxisequalto−Iflog⁡3log⁡(3x−2)andlog⁡(3x+4)areinarithmeticprogression,thenxisequalto−\eqalign{ & {\text{If}}\,\log 3\log \left( {{3^x} - 2} \right)\,{\text{and}}\,\log \left( {{3^x} + 4} \right)\, \cr & {\text{are}}\,{\text{in}}\,{\text{arithmetic}}\,\,{\text{progression}}\,{\text{,}} \cr & {\text{then}}\,x\,{\text{is}}\,{\text{equal}}\,{\text{to}} - \cr} " /> Iflog3log(3x−2)andlog(3x+4)areinarithmeticprogression,thenxisequalto−Iflog⁡3log⁡(3x−2)andlog⁡(3x+4)areinarithmeticprogression,thenxisequalto−\eqalign{ & {\text{If}}\,\log 3\log \left( {{3^x} - 2} \right)\,{\text{and}}\,\log \left( {{3^x} + 4} \right)\, \cr & {\text{are}}\,{\text{in}}\,{\text{arithmetic}}\,\,{\text{progression}}\,{\text{,}} \cr & {\text{then}}\,x\,{\text{is}}\,{\text{equal}}\,{\text{to}} - \cr} " />

Iflog3log(3x2)andlog(3x+4)areinarithmeticprogression,thenxisequalto

  • 18/3
  • 2log 38
  • 3log 23
  • 48
Answer:- 1
Explanation:-

Solution:
In arithmetic progression common ratio are equal tolog(3x2)log3=log(3x+4)log(3x2)=log(3x2)log3=log(3x+4)log(3x2)(logalogb=logab)=log3xlog2log3=xlog3log4log2xlog3=xlog3log2log3=xlog3log4log2xlog2=xlog2=log4log2x=log4log2log2x=log8x=log23

Post your Comments

Your comments will be displayed only after manual approval.

", "text": "
Iflog3log(3x2)andlog(3x+4)areinarithmeticprogression,thenxisequalto
", "dateCreated": "7/24/2019 10:09:12 AM", "author": { "@type": "Person", "name": "Nitin Sir" }, "answerCount": "4", "acceptedAnswer": { "@type": "Answer", "text": "
Solution:
In arithmetic progression common ratio are equal tolog(3x2)log3=log(3x+4)log(3x2)=log(3x2)log3=log(3x+4)log(3x2)(logalogb=logab)=log3xlog2log3=xlog3log4log2xlog3=xlog3log2log3=xlog3log4log2xlog2=xlog2=log4log2x=log4log2log2x=log8x=log23
", "dateCreated": "7/24/2019 10:09:12 AM", "author": { "@type": "Person", "name": "Nitin Sir" } }, "suggestedAnswer": { "@type": "Answer", "text": "
Solution:
In arithmetic progression common ratio are equal tolog(3x2)log3=log(3x+4)log(3x2)=log(3x2)log3=log(3x+4)log(3x2)(logalogb=logab)=log3xlog2log3=xlog3log4log2xlog3=xlog3log2log3=xlog3log4log2xlog2=xlog2=log4log2x=log4log2log2x=log8x=log23
", "dateCreated": "7/24/2019 10:09:12 AM" } }
Test
Classes
E-Book